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I, INTRODUCTION

This report addresses the problem of generating a surface-fitted grid in
a model fin-body problem consisting of a circular cylinder with four identical
symmetric fins attached. This grid is to be used in the calculation of
incompressible, laminar flow at moderate-to-high Reynolds numbers. The aim of
the calculation is to resolve the details of the separated zone at the leading
edge of the fin-cylinder juncture and the subsequent vortex that forms
downstream. Thus, the grid must have proper clustering so as to resolve the
regions of high flow gradients.

The approach used here is to generate the grid analytically but to
determine the metric coefficients numerically. Such an approach has been
pursued successfully by Jameson [1] and Caughey and Jameson [2-4] in solving
three-dimensional inviscid transonic flows about wing-body combinations. The
basic idea is to map the physical geometry to a strip of almost constant width
using a sequence of conformal transformations. Then boundary fitted
coordinates are generated by the application of a shearing transformation.

The result of the latter transformation {s a nonorthogonal coordinate system
in the physical plane but one in which the nonorthogonality can be controlled.
The present work is an extension of the Jameson-Caughey technique for
what 1s called the wind tunnel problem to the case of an initial value plane

ahead of the airfoil. 1In order to treat viscous flow, clustering trans-
formations are used so that the computational grid is uniform in all three
directions.

One advantage of the present technique is that, owing to the simple
cylindrical body geometry, a three-dimensional grid is generated by stacking a
series of two-dimensional grids. Another advantage of the analytical approach

over the numerical solution of elliptic partial differential equations as a
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means of grid generation is its much greater speed which is especially

important for three-dimensional applications.

II. ANALYSTS

2.1 Geometry of Computational Domain

We start the grid generation analysis by defining the geometry about
which a surface fitted grid is to be generated and the extent of the
computational domain.

1. The body is an infinitely long, hollow circular cylinder of

radius R, with its centerline parallel to the free-stream
velocity vector.

2., Four identical fins of constant unit chord and infinite span,

consisting of symmetric airfoil sections, are mounted on the

cylinder 90 degrees apart with their chord planes passing

through the cylinder axis.

3. The computational domain consists of the region interior to

an outer cylinder of radius Ry which encases the inner

cylinder and fins, bounded upstream and downstream by

planes normal to the cylinder axis.
A schematic of one fourth of the geometry and computational domain is shown in
Fig. 1 and a head-on view showing the coordinate system in the crossflow plane
appears in Fig. 2. Since the fins are identical and equally spaced, we have
four planes of symmetry, namely, at 8 = 0, /4, /2 and 3n/4. Thus, in the
flow field calculation for this model problem only the segment 0 < 6 < w/4

needs to be considered.
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2,2 Sequence of Transformations

Four transformations applied in sequence are required to map the fin-
cylinder and surrounding computational domain into a rectangular
parallelpiped. Then a fifth stretching transformation is applied to adjust
the grid line spacings for proper flow field resolution in physical space and
to allow a uniform step size in all three computational coordinates.

We start by defining polar coordinates (r,9) in the crossflow plane, as

shown in Fig. 2, according to
r = (y2 " z2)1/2 , (1)

6 = tan~! [lzl-) . 2)

Thus, points in physical space are defined by standard cylindrical coordinates
(x,r,08).
Following Caughey and Jameson [2], the first transformation normalizes

(x,r,0) according to (all lengths are referred to the airfoil chord):

x =x-dg +2n 2, (3)
r - R
- c
r = — (4)
Rt Rc ’
8 = 49 , (5)
where dg is the location of the singular point of the unwrapping trans- 1

formation and is just inside the leading edge of the airfoil. Note that
in the above definitions, 0 < T < 1 and O < 8 < 7 in the computational

domain., The upper limit on 8 is convenient in the next transformation.
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Because r = constant is a surface fitted coordinate we need only generate
a surface fitted grid in the (2,6) plane. The geometry of an T = constant
surface in the computational domain is sketched in Fig. 3.

The conformal transformation

X - 18 = gnfl - cosh(E + in)] . (6)

applied to an T = constant surface unwraps the geometry in Fig. 3 to produce
the domain shown in Fig., 4., The minus sign has been used on the left in
Eq. (6) so that the upper symmetry plane maps to the positive £ axis.

In the present problem initial conditions from an axis etric boundary

layer—-potential flow compusite solution are specified on tt ‘lane X = - a.
This initial value line in an r = constant surface (IvL) is >wn as line
segment ABC in Fig. 3. Under transformation (6), the IVL n - .0 a near semi-

circle in the (&,n) plane, as shown in Fig. 4. The airfoil image in this
plane is the arc DEF.
We next apply another conformal transformation to nearly straighten out

the IVL in Fig. 4. This transformation is

- - £,2
€+in=E+in+m, (7N

where £, is the intersection of the IVL with the £ axis (Point A in Fig. 4).
The conformal transformation (7) maps the upper and lower boundaries in the
(£,n) plane into slowly varying functions of £ in the (£,7n) plane, as shown

in Fig. 5. We note that near Points A and C the IVL is now cusp-like.
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The fourth transformation is a shearing transformation which straightens

out the upper and lower bhoundaries in the (E,ﬁ) plane. This transformation

is
X =t , (8)
yo Lo 9
D s
Z =T, (10)
where
D = D(E,T) = ny - 0 (11)

and RU and BL are the ordinates, at a given E, of the upper and lower
boundaries in the (£,n) plane.

Finally, to provide for clustering the grid lines near the fin and
cvlinder surfaces to resolve the viscous lavers there and to space lines
around the airfoil and in the wake as desired, we introduce one-dimensional

stretchina functions as follows:

Y. = Fp(Y) (13)
ZC = F}(Z) [ (l‘,‘)

For the time being we leave Fis 3] and Fq unspecified. Thus (Xc, Y ZC) are

C)
the computational coordinates devised so that the step sizes AX., AY. and

AZC are constants.
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2.3 Conformal Mapping Relations

Since the FORTRAN code is written in terms of real variables, the real
and Imaginary parts of the conformal mappings must be determined. In
addition, the inverses of both mappings are needed because the grid generation
procedure requires belng able to proceed from the (x,8) plane to the (Xe» Yc)

plane and then back to the (x,8) plane.

The real and imaginary parts of Eq. (6) yield the two relations:

]

cosh § cos n =1 - e¥ cos 6 , (15)

eX sin 8 . (16)

sinh £ sin n

The solutions for x and 8 are obtained by squaring (15) and (16), then adding

and making use of the ordinary and hyperbolic trigonometric identities. The

result for ;, choosing the proper sign, is
x = 2a(cosh £ - cos n) , (17)
and 6 is obtained from Eq. (15), viz.,

1 {1 = cosh & cos n
cosh § - cos n

8 = cos”

. (18)

To obtain the solutions for £ and n we first define,

p=1-eXcos 8, (19) 1

q=eXsin6 . (20)

Following the same procedures as above, we eliminate n to obtain a quadratic

e e g, g
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equation for sinh2 £ which has the solution

sinh? £ = = [(82 + 4q2)!/2 - g} (21)

NI»—-

where

=2 -2
B=1-p =-q . (22)

In the right half plane £ is the positive root of Eq. (21). The expression

for n with the preper behavior (0 < n < 7) is obtained from Eq. (15), viz.

=
|
PR E—

. (23)

cosh £
{ J

Next, the real and imaginary parts of Eq. (7) vield

- £o2
E =& 11 + —5 71 > (24)
£ + nzj
\
- 502 !
n=n |1l - Eif:—;g, . (25)
J

=~-a==-a+4212and n=0. The

B

We determine £, from Eq. (17) by setting

The result is

£, = cosh™l(1 + 2¢72) | (26)
where a = dg + dryye
To solve for £ and n in terms £ and n we return to the complex form which f

is written as,

w =z (27)
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where

Solving Eq. (27) for z yields,

where

Let us now define
¢ =u + 1iv .
Then, combining Eqs. (28), (29) and (31) gilves:

E=u+ %—E s

n=v+ ﬁ .

Nlr—-

Now Eq. (30) leads to the following relations:

2 -5,
uv = 8 ’
where
p =1 (B -7 - g,
q=gEn.

Equations (35) and (36) can be solved for u and v with the result:

30 March 1983
GHH: 1hm

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

37

(38)
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u2=5—(;+;) , (39)
aLla-n o, (40)
where
w= (2 + 4q)l/2 (41)

Then the final result for £ and n, combining Egs. (33), (34), (39) and (40),

is

1 = | ~oq 172
crE+ g e’ (42)

o™
t

R AU D 43)

=
i

2.4 Calculation of Shearing Boundaries

The shearing boundaries, which are straightened out by the shearing
transformation Eq. (9), are defined as ny() and ﬁL(E)- Thus ny is the image
of the upper airfoil surface and the line 8 = 0 downstream of the trailing
edge while EL is the image of the upper half of the initial value line
(x = - a) and the line 8 = 7 for x » - a.

We start by determining the image of the upper half of the airfoil in the
(E.;) plane. The airfoil will be given as a set of points (xp, yF)i where for
convenience we take the origin at the leading edge. Then the scaled airfoil

coordinates in the (§,§) plane, for a given r, are:

XF=xF+ln2-ds’ ([;A)




EF =4 g

14-

a1 |2E
r

30 March 1983

Next, the image in the (£,n) plane is computed from

33

where

cosh EF

~2.1/2

a=(52+4q)

stab™! (5 (o - &)1

»

GHH: Lhm
(45)
2, (46
(47)
(48)

and p, q and B are given by Eqs. (19), (20) and (22).

(£,n) plane is

EF = EF(I + u) ’
;U = np(l - u) ’
and
u = €y’
R Y A
EF + ng

Then the image In the

(50)

(51)

The upper boundary beyond the airfoil tralling edge 1Is the image of 9 =0

which maps to n = n. To calculate EU in this region we first compute a

uniform polat distribution of £ on the interval (ETE’Emax)' Then
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corresponding values of § are computed by iteration from

gln+l) o

+ et

1 Uq

where superscript n denotes the iteration number, and

o gL
S avar (53)

We note that Eq. (52) converges quite rapidly. With a value of £ known, RU

is computed from

ng =T o (- ). (54)

In the calculation of the lower ; boundary the shearing transformation

requires that the same E distribution be used as was determined for RU‘ The

lower boundary is computed in two segments, the first on the interval (O,Eo),
where Eo iIs the image of £,, and the second on the remaining interval
(EorEmax) -

On the interval (O,Eo) we calculate § and n by iteration from the

rapldly convergent formula:

(n+1) _ _E
where In thls case
2
£o
= - N 56
PRI ™ (36
n = cos”!(cosh C(n) - 273 ., (57)

To start the iteration we set u =1 in Eq. (55) which from Eq. (56) is seen

e - - - v T A e —— s e e s
v ¢

- = e e pRe, - - ia b .
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to be exact at £ = £,. With £ and n known, n, is calculated from
;\L=n‘(l-u)' (58)

On the interval (Eo, Emax) we know from Eq. (58) that the image of 8 = m

is
n, =0 . (59)

Thus knowing the distribution of BU and EL on (O,Emax) we can obtain the

distribution of the shearing distance D from Eg. (11).

2.5 Stretching Functions

The approach taken here, as already mentioned, is to use one-dimensional
stretching functions, as indicated by Eqs. (12), (13) and (14). 1In the present
application the location and length scales of regions of rapid variation of the
solution are known beforehand. In a Z = constant plane of the computational
domain, as shown in Fig. 6, clustering of Y = consiant lines is needed near
Y =1 and 0 to resolve the boundary layer developing on the airfoil and the
region around the corner singularity, x=-2 , 8= , In the physical plane.
Thus, for the variable Y a two~sided stretching function is required. Because
of the primary viscous layer on the cylinder clustering is needed near Z = 0
which requires a one-sided stretching function for Z. The stretching function
for X depends on criteria related to the flow field and the mapping geometry
which will be discussed later.

Vinokur [5] has determined approximate criteria for the development of
one- and two-sided stretching functions of one variable which give a uniform

truncation error independent of the governing differential equation or

e et
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difference algorithm. He investigates several analytic functions but finds
that only tan z, where z is real or pure Ilmaginary, satisfies all of his
criteria.

We start with the stretching function for Y and note that both Y and Y.
are normalized variables as required in Vinokur's functions. In the present

case, z is taken to be pure imaginary which leads to

tanh(Y .A¢)
Y = X sinh 26 ¥ (I = & cosh 49) tanh(Y_A¢) , (60)
where
A= (so/sl)l/2 ’ (61)
B = (5052 (62)

and Sp and S} are dimensionless slopes defined as

dy
SO=-d—Y£(O) ’

dy
Sl=—d'Y-£(1) >

which control the clustering at Y = 0 and Y = 1, and A¢ is the solution of the

following transcendental equation:

B = Ei%%_éi . (63)

To avoid solving Eq. (63) by iteration, Vinokur determines the following

extremely accurate approximate solutions for small and large B:
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For B < 2.7829681

a6 = (68)12(1 - 0,158 + 0.05732142982
-~ 0.0249072958° + 0.00774244618"
- 0.00107941238°) , (64)
where
B=B-1. (65)

For B > 2.7829681

Ap = V + (1 + 1/V)2n(2V) - 0.02041793
+ 0.24902722W + 1.9496443W2 - 2.6294547wW3
+ 8.56795911w4 | (66)
where
V=248, (67)
and
W= 1/B - 0.028527431 , (68)

An example of this two-sided stretching function for Sg = 100 and S| = 10 is
shown in Fig. 7. For this case, A¢ computed from Eq. (66) is 5.926,
The one~sided counterpart of Eq. (6) is antisymmetric about the mid-point

and, in terms of Z and Z,, is given by

tanh [%'A°(Zc -~ 1]
Z=1+

0<Z<«1 . (69)

tanh 4¢
2
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where A¢ is the solution of
SO = __Siz; A ) (70)

and

dz
SO = —d-Z— (0) .

Two examples of this one-sided stretching function, Sp = 10 and 100, are shown
in Fig. 8.

The stretching function in x is required to have the following
properties:

(1) It must have the ability to cluster points near the nose of the

airfoil to resolve rapid flow field variations in that region.

(2) Control points, where grid lines are required, are the corner,
X = X,, and the airfoil trailing edge, X = Xrg-

(3) Downstream of the airfoil trailing edge where flow gradients
are decreasing the step size should gradually increase,

(4) The stretching function should have continuous first
derivatives.

(5) For proper flow field resolution, the number of steps on the
intervals (O,Xo) and (XO,XTE) are to he parameters.

The above requirements dictate the stretching function be made up of three

)o

plecewise continuous segments on (0,X,), on (XO,XTE) and on (XTE’Xmax

We start by defining variables normalized on the corner location,
PeX k-l

. An appropriate stretching function on the first segment is given by Eq. (61) of

Vinokur, viz.

-~ -

o




-~

where Sp is the

in that region.

where N is the

by Eq. (73), is
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~ -~

Xe 1143 (Sp =~ DA = X2 = X)) , 0 <X <1, (72

slope at the origin and is used to control clustering of points
The uniform step size on Segment 1 is given by
AXC =T (73)

number of intervals on Segment 1. We note that AX ., as given

also the step size on Segments 2 and 3.

On Segment 2, the scaled trailing edge coordinate is given by

where Ny is the

The constraints

where

function is

(Xedpp = 1+ Ng X, (74)

a

. #
number of intervals on Segment 2 We note that (Xc)TE XTE

to be satisfied by the stretching function of Segment 2 are:

which from Eq. (72) is

X =1, X' = X! on X = 1
, (75)
X = Xrg on Xc¢ = (XC)TE
x; =S,
dX . 'X =1
X! = 2(3 - Sg) (73)

With three constraints a parabola is appropriate. The resulting stretching
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X =1+ [X] +AaX, - DI& = 1), (77)
where

X1g - 1 - X{[(Xdrg - 1!
A= 0 5 . (78)
(X = 1

On Segment 3 a geometric progression is used to increase the step size

in X. Requiring continuity of X at the junction with Segment 2, we have

(
~k-1
- - " 1 -
Xk=XTE+AXl —l—-cé—— , k22, (79)

where C i{s the constant step size ratio defined by,

~

Continuity of the first derivative at the junction is ensured by choosing &X;

equal to the last AX on Segment 2. No attempt is made to match X ., exactly.

The stretching function for X is seen to have four parameters, Sg, Nj,

N> and C, which provide considerable flexibility in the point distribution of

-

X. A typical example is shown in Fig. 9.
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3. RESULTS AND DISCUSSION

3.1 Generation of the Grid

The step—by-step procedure to generate a grid in the physical plane for a

given airfoil shape and initial value plane location is as follows:

(1)

(2)

PO — we - -

The uniform computational grid (Xc.’Yc.’ch) is first
. i j

established and then (Xi,Yj,Zk) are calculated via the

stretching functions described in Section 2.5.

With (Xg Y:,Zy) known, ;k is determined from

;‘: = Zk . (80)

Then for r fixed, the points in the (X,Y) plane are transformed

to the (£,n) plane by

Eijk = X o (81)

Nijk = anik + ()i » (82)
where

Dijk = (;U)ik - (;L)ik . (83)

By Eq. (45), §F depends on r and hence r and therefore BL
and RU must be computed anew for each value of T. The
procedure used here is to calculate more points than
needed on the shearing boundaries for a given T and then
to use Lagrange cubic interpolation to determine EL and

EU for a given E.
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(3) with (£,n) known, the transformation to the (£,n) plane is

S U S UL B
€ijk = E'Eijk [5’(“ p 15k ’
- ~ 1/2
1 - 1
P = e . . + — -
nijk =3 Mgkt bz p)]l_]_k ,

where

s " ~2.1/2

= (P2 + 4q2) / ’
~ 1 _ _
p=7 (B2 -0 -5,
~ 1 ~ -

=Z—En .

(4) Next, the points in the (£,n) plane are transformed to

the (x,8) plane by

;ijk = gn(cosh gijk - cos “ijk) s

{
1 - cosh giik cos niik]

eijk = COS-1

(5) The final step is to compute the cylindrical coordinates of

each grid point from:

X{jk = *ijk +dg ~ &n 2,

1
0iik = 7 %1ijk »

re = Re + (Re = Rdry

cosh gijk - Ccos ”ijk !

(84)

(85)

(86)

(87)

(88)

(89)

(90)

91)

(92)

(93)
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3.2 Features of the Grid

The shearing transformation applied at the fourth stage necessarily
produces a nonorthogonal grid in the (;,6) plane. The nonorthogonality is
smallest on the lower shearing boundary, under most conditions, and largest at
the airfoil surface on the upper shearing boundary, as can be seen from Fig. S.
On the upper (airfoil) boundary the nonorthogonality near the leading edge
(£ = 0) can be controlled by pruper location of the sfiagularity of the
unwrapping transformation, Eq. (6). Away from the leading edge the only control
over nonorthogunality is to keep the airfoil reasonably thin, say elght percent
or less, which will maiantain EU 4s close to the image of n = 7 as possible.

The parameter which controls grid orthogonality near the airfoil leading
edge is dg in Eq. (3). The most nearly orthogonal system in this region is
produced when the leading edge maps into an n = constant line. In the (x,86)
plane such a line is closely approximated by a parabola centered about 6 = 0 and

is effectively characterized by its radius of curvature at the origin, given

by

Po = . (94)

We determine p, by setting n = np g = constant in Egs. (15) and (16),
differentiating the result twice with respect to 8 to find dz;/déz, plus notiag

that dx/d8 = 0 at 8 = 0 and by virtue of Eqs. (3) and (5) that

937 16 92X
d62




e SRTen) T TN e

~25~
The result is

__ 1 sin? NLE -;LF
Po = " TE o -

cos nLE

From Eq. (3) evaluated at the airfoll leading edge (x = 0) we have

;LE = fn 2 - dS

and from Eq. (17) with £ = 0 and n = ny g we find that

cos ng = 1 - ZemdS
from which it follows that
sin ng = 2le”9s(1 - 79!
Hence, Eq. (95) for p, becomes
2e S -1

which can be solved for dg to yield,

[ Al
1 + 16 p,

ds = £n ll + 8 poI

/

Next, we fit the airfoil leading edge by an osculating parabola, viz.

X = K62

2
where K = xl/el and (xi,ei) are appropriate airfoil coordinates near the

leading edge. The radius of curvature of the airfoil at the leading

from Eq. (101),

1 _ 8
Xo YETRE

PLE =

30 March 1983

(95)

(96)

97)

(98)

(99)

(100)

(101)

edge 1is,

(102)
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The optimum value of dg (which produces the most nearly orthogonal grid near

E = 0) is obtained by equating pyp and p,e Thus, ds can then be determined
from Eq. (100). Figure 10 shows the variation of EU with £ for a six percent
thick Joukowsky airfoil for three values of dg, one of which was determined by
Eqs. (100) and (102). In these three cases, we have dg << dj which has the
effect of limiting the influence of dg on EU to the region 0 < % < Eo where here

Eo ¥ 0.87. As r increases from R, to R, the leading edge radius of curvature

of the airfoll decreases because 8p decreases--see Eq. (45). Thus dg must be

decreased accordingly.

On the lower shearing boundary the nonorthogonality arises from the
mapping of the initial value line (IVL) by Eq. (7). 1In the (§,n) plane the IVL
is very nearly half of an ellipse with the ratio of the semi-major to
seml-minor axes lengths, defined as XA = n,/£, (n, is the value of n on the IVL

at £ = 0) given by

-1 - -a
A = Cos 1 2e"2) . (103)

cosh_l(l + 2e73)

Figure 11, in which X is plotted versus "a", shows that as "a” becomes large
A approaches unity and therefore the IVL approaches a semi-circle in the (§,n)

plane. Thus for EL to have the smallest maximum (at £ = 0) and hence for

£ = constant lines at n = HL to be as nearly orthogonal as possible, "a" should

be large, say 3 or 4, a circumstance desirable on physical grounds anyway.

By T N . BT SR -
b S e~ Y 3 T
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At the image of the airfoil trailing edge in the (E,E) plane (Points D
and E in Fig. 5) when the trailing edge angle is finite the derivative of RU
with respect to E will be discontinuous. At the ends of the IVL (Points A and
C in Fig. 5) the hehavior of BL is cusp-like which means that the second
derivative of EL with respect to E is discontinuous. These discontinuities
produce similar type discontinuities in Y = constant lines via the shearing
transformation. This behavior is one of the disadvantages of algebraic
mappings involving shearing transformation which is absent in grids generated
by solving elliptic partial differential equations. The discontinuous behavior
of derivatives of Y = constant lines in the physical plane should therefore be
accounted for in the calculation of affected metric coefficients and in the

numerical method of solution of the viscous flow equations.

3.3 Numerical Examples

For simplicity a symmetric Joukowsky airfoil was used in the numerical
examples of the grid. The ordinates of this airfoil (for unit chord) are

given by,
yE = ST (1 - xp) (4 xp(l - x;.-)l”2 , (104)
FoSa F

where xp 1s measured from the airfoll leading edge and T is the maximum
thickness to chord ratio. Two example grids in the (x,8) plane are presented
with parameters listed in Table 1 below. The parameter J is the number of

points in the Y direction.
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Parameter Case 1 Case 2
N; -— 15
Ny - 15
J 31 31
dryL 3.0 3.0
dg 0.05 0.05
dop 3.0 3.0
T 0.12 0.06
R¢ 1.0 1.0
r/R, 1.0 1.0
Sg 10 10
51 10 10
So — 0.2
6 - 1.2

Table 1. Grid parameters for Numerical Examples

Case 1 is shown In Fig. 12 and Case 2 in Fig. 13.

function in X and no X = constant line through the corner.

Case 1 has no stretching

The non-

orthogonality of the grid in Case 1 (12% thick) is seen to be more pronocunced

at the airfoil surface than in Case 2 (6% thick) which bears out the remark

made earlier. Notice that
on the cylinder surface (r
the fin with the cylinder.
thickness in terms of € is

pronounced.

both examples are for the grid in the (x,6) plane

= R.) which corresponds to the intersection of

Hence In these examples, by Eq. (45), the airfoil

a maximum and thus the nonorthogonality is most

The computer code listing Is given in the appendix.




(2)

(3

(4)

(5)
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UPPER SYMMETRY PLANE
(e = ml4)

M

Figure 2.

Coordinate System in Crossflow Plane.

LOWER SYMMETRY PLANE
(e = -mld)
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Figure 11. Ellipticity of Initial Value Line in (f£,n) Plane.
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Appendix: Grid Generation Computer Code Listing
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PROGRAM NAME? CGKRID3

THIS PROGRAY CUMrPUIES A SURFACE FITTED C=GRIC FOR A FIN
CYLINVER B0DY,

THE FIN IN THIS VERSION IS A SYMMETRIC JCUKOwSKY AIRFOIL,
THIS 1S THE 3=D VERSICN.

EXEERRARKR RN R EERER SRS KRR R LR SRR NN SRR E RS SRR RS AR B S AFAREISHES S

IMPLICIT REAL¥E (A=H,0=2)

COMMON /BLROLl/ IMAX,JMAX,1TE,ITEM,ILAST,ISEG1,IStGY?
ComMmMOid /BLKO2/ XIEM,XI0,XIBO

CoM4%0ON /BLKOJI/ C1,C2,C3,C4,C5,PI,PIS4

CIO“MON /oLKO4/ XF(101),YH(101)

COMMON /BLKOS/ XIB(151),5BAR(151),ETARL(151)

CJimMON /BLKOB/ 5Y0,5Y1,520,5X0,55R

COMMUN /BLKO7/ ZC(151),BIGZ2(151)

1 FORMAT(514)
2 FORMAT(SF10.4)
10 FORMAT(1H1,4X,'INPUT PARAMRTERS FOR C=GRID!')
11 FORMAT(1H0,9X,'ISEGL =',16/10X,'1SEG2 =',16/10X,JMAX =!,
1I6/710X,'€«MAX ='146/10X,'ITE =1,16)
12 FORMAT(19X,'DIVL =',F10,4710X,'D0p =',F10,4/
110X,'TAU =',¥10,4/710X,'RC =',F10.,4/10X,'RT =)' ,F10,4/710X,
2'SY0 =',F10,4/10X,'SYt =',F10,4/10X,'SZ0 =',F10,4/10X%,'SX0
3F1U,4/10X,'SSR  =!,F1U.4)
13 FOKMAT(1HO)
14 FOXMAT(5X,'STACKED C=GRID FUR FIN=CYLINDER GELOMETRY')
15 FONMAT(10X,'US =t,v14,4)

INPUT KEGQGUIREMENTS

ISEGL = NO, INTERVALS ON FIRST X=SEGMENT,

ISEG2 = nO, INTERVALS ON SECOND X=SEGMENT.

IMAX = NG, PGINTS IN XeUIRECTION,

JMAX = NO, POINTS Iy Y=DIKECTION,

KMAX = NO. POINTS IN Z-DIRECTION,

ITE = NO, POINTS On WIRFUIL INITIALLY,

DIVL = DISTAMCE FROM AIRFOIL L.E. TO INITIAL VALUE LINE.

vS = DISTANCE FROmM AIKFOIL L,E, TC SINGULARITY OF
COURDINATE SYSTEM,

DOb = DISTANCE FROM AIRFGIL F.E, TO OUTFLOw BOUNDARY,

TAU = AIRFOIL MAX. THICKNESS TO CHORD RATIO,

RC = INNER CYLINDER KADIUS, IN TERMS OF AIRFOIL CHURD,

RT = OUTER CYLINDER RADIUS, IN TERMS OF AIRFOIL CnORD.

SY0 = Y=STRETCHING PARAMETER AT AIRFOIL SURFACE,

SY! = Y=STRETCHING PARAMETaR AT INITIAL SURFACE,

$20 = Z=STRETCnING PARAMETER AT INNER CYLINUVER,

SX0 = IMITIAL X=STREICHING PARAMETER, SEGMENT 1,

SSK = X=GEOMETRIC PRUGRESSION RATIO, SEGMENT 3,

READ(5,1) ISEG1,ISEG2,JMAX,KMAX,ITE

READ(S,2) DIVL,DOB

READ(S5,2) TAU,RC,PFT

READ(S,2) SYV,SY1,820,8X0,8S8R

ITEMSITE=1

WRITE(6,10)

WRITE(6,11) ISEGL,ISEG2,JMAX,KMAX,ITE

wRITE(6,12) OIVL,DOB,TAU,RC,RT,SY0,S5Y1,520,5X0,SSR
wRITE(6,13)

WRITE(6,14)

C3=22,0D0*TAU/DSORT (27,000)




620
630
640
650
660
670
680
690
700
710
720
730
7490
750
760
770
780

OoONnnO 000N

(s X2 X!

810
820

0ONnno

[
(- ]
o
e Rz NeNg

1140 C
1150 C

50
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PI=3,1415926535897900
PISQ=Pl=*pr]
XE=1,000+D08

CALCULATE AIKRFOIL COORDINATES,
CALL FOIL
CALCULATE ZC AND BIGZ.

CALL STRFZ(ZC,BIGZ,KMAX,SZ0)
DELR=R1=RC

BEGIN CALCULATION OF STACKED GKID,

DO S50 K=1,KMAX
RAD=RC+DELR*BIGZ(K)

CALCULATE 0S = DISTANCE FROM AIRFOIL LEADING EDGE TO0
SINGULARITY UF UNWRAPPING TKANSFORMATION,

THr=DASINCYF(4)/RAD)
RHOU=0,5DO0XTHF*THF/XF(4)
DS=DLAGC((1.,000+16,0D0*RHO)/(1,0D0+8,0D0O%XRHD))
WRITE(C®,13)

WRITE(®,15) DS

WRIT€(6'13)
C1=DEXP(=(DIVL+DS))
C2=2,000%C}
RHS=DSQRT(4,0D0%C1*(1.0D0+C1))
CALL ASINH(XIO,RHS)
C4=DLOG(2.,0DV)~DS

CS=XIO*XI1I0

X1B0=2.0D0%XI0

CALCULATE XIBM = COORODINATE OF DOWNSTREAM BOUNDARY IN XI BAR =
ETA BAR PLANE,

XBE=2XE+C4

TERM=DEXP(XBE)=1,0D0
RHS=USURT(TERM*TERM~1,000)

CALL ASINH(X1E,RHS)
XIpM=XIE¥(1,0D0+CS5/(PISQ+XIE*XIE))

CALL SHEAR(RAD)

KK=K

CALL XTGRID(KK,RAD)
CONTINUE

SI10P

END

SUBROUTINE SHEAR(RAD)

1130 R I I s e e e e e I mnmmm

THIS SUBROUTINE CALCULATES SHAR VS, XI BAR, TU BE uUSED IN THE
SHEARING TRANSFORMATION,.

1160 CASSRSBERARNERERSENNERRRERRRERARRERRARRRSRAANERNNSSRBERRSRRNEREEEIAER

IMPLICIT REAL*8 (A=H,0=2)

COMMUN /BLKO1/ IMAXK,UMAX,ITE,ITEM,ILAST,ISEG]1,ISEG?
COMMON /BLKO2/ XIBM,X10,XIBO

COMMON /BLKO3/ C3,C2,C3,C4,C5,PI,PISQ

COMMON /BLKO4/ XFKF(3101),YF(101)

COMMON /BLKOS/ XIB(151),SBAR(151),ETABL(1S51)




1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
14590
1460
1470
1480
14990
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1649
1650
1600
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1600
1810
1820
1830

s NoNoNoNe]

OoO0On

10
11
12
13
14

50

70

80
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DIMENSION ETABU(151%)

FORMAT(5X, 'SHEARING BOUNDARY IN XIBAR = ETABAR PLANE')
FORMAT(1H0)
FORMAT(SX,'1',0X, ' XIBAR',9X,'ETABL',9X,"ETABUL',9X, 'SBAR")
FORMAT(I6,4D14,4)

FORMAT(1c40,4X,'UNABLE TO CONVERGE XI IN 50 ITERATIOMLS'/SX,

1"'X1BAR =!,014,.4)

COMPUTE NORMALLIZED AIRFOIL COORDINATES FOR GIVEN CYLINDRICAL
RAUIUS AND TRANSFORM TQ XI BAR = ETA BAR PLANE, THIS STEP
GIVES THE FIRST PORTION OF THE UPPER BOUNDARY,

WwRITE(6,11)
WRITE(6,10)
WRITE(o,11)
T1=RAD*RAD

Do S0 I=1,ITE
YFLI=YF(I)
THF=DASIN(YF1/RAD)
XBFI=XF(I)+C4q
THBFI=4,000%¢THF

T2=DEXP(XBFI)
PBAR=1,000=T2*DCUS(THBFI)
QBARST2%USIN(THRFI)
OSU=UBAR*QHBAR
BETA=)1,0D0=PBAR*PBAR=QSW
ALPHASUSGURT(SETAXEETA+4,0D0*QSQ)
RHS=USQRT(0,SCO*(ALPHA=BETA))
CALL ASINH(XIF,RHS)
ARG=PBAR/DCOSK(XIF)
ETAF=DACOS(AKG)

XMUSCS/(XIF*XIF+ETAV¥ETAF)
XIB(I)=XIF*(1,0D0+X4U)
ETABU(I)=ETAF*(1,0D0=XHU)
CONTINUE

CONTINUE UPPeR BUUNDARY CALCULATION BEYOND AIRFOIL T.E,
TO XIBM,

DXIB=0,2D0
ILASTSITE+(XIBM=XIB(ITE))/DXI1B
IFCILAST,GT,151) ILAST=151
ITEPSITE+Y

WRITE(6,12)

DO 100 ISITEP,ILAST
XIBAR=XIb(I=1)+DXIB

XIB(I)=AIBAR

XIL=XIBAR

DO 70 1T1=1,50 1
XMUSCS/(PISQ+XIL*XIL)
XIZXIBAR/(1,0D04XNMU)

IF(DANS(XI=XIL) LT.1,0D=08) GO TO 80
XIL=XI

WRITE(6,14) XIBAR

ST0P

ETABUCI)SPI®(1,0D0=XMU)

¢

e SRR T

L2t T iy




1840
1850
1860
1870
1880
1690
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
20680
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360

. 2370
2380
2390
2400
2410
2420
2430
2440

—— e .
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100 CONTINUE

CALCULATE LOwWER BOUNDARY IN XI BAR = ETA BAR PLANE AND
SBAR,

NONHo

DO 200 I=1,ILAST
XIBAR=XIB(I)
IF(XIBAR,GE.XI80) GO TO 140
XIL=XIBAR
XMu=1,000
Do 120 I171=1,50
XI=XIBAR/(1,0D0+XMU)
ARG=DCOSH(XI)=C2
LTA=DACOS (ARG)
XMU=CS/ (XT*XI+ETA*ETA)
IF(DABS(XI=XIL),LT.1,00=U8) GO TQ 130
120 XIL=XI1
WRITE(b5,14) XIBAR
STOP
130 ETABL(I)SETA®(1,000=XMU)
GO TU 150
140 ETABL(I)=0,0D0
150 SBAR(I)=kTABU(I)~=ETABL(IY)
wR1TE(6,13) I1,XIB(I),ETABL(I),ETABU(I),SBAR(I)
200 CONTINUE
RETURN
END
SUBRUUTINE XIGRID(K,RAD)
CEXERRXBERARREREFERREEFASIERL LA KRSKAR XA KRS AR R LA RR LR R RS FBEXLNRRE
C THIS SUBROUTINE CALCULATES THE GRID IN TKE XBAR = THETABAR
C PLANE,
CRESXEFAXLEXERRERXFEAERREEXRXARESRIENEXXAFXRRREEXKE XX SR XXX RLBERERRE S
IMPLICIT REAL*8 (A=H,0=2)
COMMON /BLKO1/ IMAX,JMAX,ITE,ITEM,ILAST,ISEG1,ISEG2
COMMOnN /BLKO2/ XIBM,X1I0,XIBO
CommGn /BLKO3/ C1,C2,C3,C4,C5,P1,PISQ
COMMON /BLKOS/ XIB(151),8BAR(1S1),ETABL(151)
COMMON /BLKOS/ SY0,S5Y1,5Z0,8X0,S8R
COMMQNn /BLKO7/ ZC(151),B1GZ(151)

DIMENSION BIGX(151),BIGY(151)
DIMENSLION XC(151),YC(151)

11 FORMAT(1HO)

12 FORMAT(SX,'I',8X,'J',5X,'K',6X,'XC',12X,'YC',12X%,'ZC',12X,
1'R',13X,'X',13X,'THETA')

13 FORMAT(316,6D14.4)

SET UP GRID IN CUMPUTATIUNAL PLANE,

nnNnn

XBTE=XIB(ITE)

NPTE=ISEGI+ISEG2+1

CALL STRFX(XC,BIGX,ISEG1,1SEGZ,IMAX,SX0,SSR,XIBO,XBTE,XIBM)
CALL STRFY(YC,BIGY,JMAX,SYU,S5Y1)

DETERMINE GRID IN PHYSICAL PLANE,

0NN

I=1
XIBAK=0,0D0
S4I=SBAR(L)
ETBLIZETABL(1)

R o R

DR aae R g,ty !
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WwRIIE(C6,11)

WRITE(o0,12)

WRITE(o0,11)

DO 70 J=1,JMAX

ETABAR=SETBLI+SBI*BIGY(J)

P=VU,2500%ETADAR¥ETABAR+CS

XI=0,0uL0

ETA=O0,500%ETABAR+DSAKT(P)

XBAR=DLOG(1,0D0=DCOS(ETA))

THBAR=0,000

XX=XBAR=C4

THETA=0,000

WRITE(6,13) I,J,K,XC(I),YC(J),ZC(K),RAD,XX,THETA
70 CONTINUE

IBEG=1

IERD=ITE

DO 100 I=2,IMAX

XIBARSBIGX(I)

IF(I.LE.NPTE) GO TO 80

I3EG=1Tk

JEND=SILAST

INTERPCLATE TO FIND SBAR AND ETABL CORRESPONDING TO XIBAR,

OoO0Nn

80 CALL INTERP(XIB,SBAR,XIBAR,SBI,IBEG,IEND,INT,0)
CALL INTERP(XIB,ETABL,XI[BAR,ETBLI,IREG,IEND,1INT,1)

WRITE(6,11)

WRITE(0,12)

WRITE(6,11)

DO 100 J=1,JdMAX
ETABAR=ETBLI+SBI*BIGY(J)
Q=0,2500%XIRAK*ETABAR

P=0,2500% (AIBARXXISAR-ETABAR®ETABAR)=CS
XMU=DSQRT(P*P+4,0D0*0*Q)
XI=0.,SDO*XIBAR+DSQRT(0.,5D0%(XMU+P))
ETA=0,5D0%ETABARDSOKT(0,5D0% (XMU=P))

T1=0DCOSH(XI)
T2=DCOSCETA)
ARGLI=T1~=T2
XBAR=DLOG(ARG1L)
THBAR=DACUS((1,000=T1%T2)/ARGL)
THETA=0,2500*%THBAR
XXSXBAE=C4
WRITE(6,13) I,J,K,XCC(1),YC(J),ZC(K),RAD,XX,THETA
100 CONTINUE
RETURN
END
SUBROUTINE ASINH(ARG,RHS)
CRFRRAB AR R RN AR ASRR RN KRR AR R IR R ARRF AN RN AEREE R KNSR R ARB RN R RS S ARNES
C TAlS SUBROUTINE COMPUTES THE INVERSE HYPERBOLIC SINE USING
C NEWTON'S METHOD,
CREXXXR SRR XXX EFEERERERAXELEREXE XXX AR RN LS RS R X BB ERER KL EERERE SRR
IAPLICIT REAL*B (A=H,0«Z)
C
10 FORMAT(1hO,4X,'INVERSE HYPERBOLIC SINE CALCULATION FAILED FOR
1SINH(X) =',D14,7)

TESTEDABS (RHS)
IF(TEST.GT,.1,000) GO TO 30
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ARG=RHAS

GO TO 40
ARG=DLGG(2,0D0*TEST)*DSIGN(Y,0D0,RHS)
CONTINUE

DO 50 k=1,50

FASDSINHCARG)=RHS

FPASUCUSH(ARG)

DAKG==F A/FPA

IF(DABS(DARG) ,LT.1,00=10) RETURN
ARG=ARG+0ARG

CONTINUE

WRITE(6,10) RHS

RETURNK

END

SUBRUUTINE FOIL

CEEEBRERRRE AR RN AR R RN KRR R RSN ER RN SR RN KRR RN R K AR R R R AR NS R E AR KR XS

c
c

THIS SUBROUTIKE GENERATES (X,Y) COORDINATES FUR A SYMMETRIC
JUUKOWSKY AIRFOIL,

COBRRERRRRREERRRAREXRRARRERREERERAERRERREREEN SR NESARRNERERRKENERAEE

C
10
11
12
13
C

50

50

IYPLICIT REAL*8 (A=H,0=Z)

COoAMUON /BLKO1l/ IMAXK,JMAX,ITE,ITEM,ILAST,ISEG!,ISEG2
CamMQn /BLKO3/ Ci1,C2,C3,C4,C5,PI,PLSQ

COMMON /BLKO4/ XF(101),YF(101)

FORMAT(SX,'ALRFUOIL COORDINATES')
FORMAT(1H0)
FORMAT(SX,'1',6X,"XF',13X,'YF!)
FORMAT(I6,2D14,4)

DTH=rI/ITEH

XF(1)=0,0D0

YF(1)=0,000

DO S0 I=2,1TEM

TH=(I=1)*DIH

T1=DCOS(TH)
XF(1)=0,5D0%(1,000=T1)
YF(I)=SC3%(1,0D0+T1)*DSIN(TH)
CONTINUE

XFC(ITE)=1,0D0

YF(ITE)=0,0D0

WRITE(b6,11)

WRITE(6,10)

WRITE(o,11)

DO 60 I=1,ITE

WRITE(6,13) 1,XF(1),YF(I)
RETURN

END

SUBROUTINE INTERP(XX,YY,XINT,YINT,IBEG,IEND,INT,ISW)

CRESRRB AR SRER RSN AR AN AR R KRN E R AR R AR RN KRR R A KRR F AR SRR SRR K A RRRE XK

OOOOOO0OO0O0O O

THIS SUBROUTINE USES LAGHANGE CUBIC INTERPULATION TO
DETERYINE YINT FOR A GIVEN XINT,

XX = INDEPENDENT VARIABLE,

Yy =z DEPENDENT VARIABLE,

1BEG = INITIAL InDEX FOR INTERPOLATION RANGE,
IEND = FINAL INDEX FOR INTERPOLATION RANGE,
INT =a UPPER INDEX OF INTERPOLATION INTERVAL,
iSw = INTERPOLATION INTERVAL SEARCH SWIICH,

0 PERFORM SEARCH,
1 OMIT SEAKCH,
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GHH: 1}
CONEBBE AR RR RN RN AR AR NP ERAN KRR RR KR RR A RRE R RSN RS R AR RR RN NRR
IMPLICIT REAL*¥8 (A=H,0=2)

DIMENSIUN XX(151),YY(151)

IF(IS#,GT,0) GU TO 7%
60 D00 70 I=IBEG,IEND
INT=1
IF(XXCI).GYL,XINT) GO TO 75
70 CONTINUE
7% IFC(INT.EQ.(IBEG+1)) GO TO 80
IFCINTLEQ,IEND) GO TU 90
I{sINT=2
I2=INT=1
I3=InNT
I4=INT+1
GO T0 100
30 II=IBEG
I12=IBEG+]
I13=1IBEG+2
I4=IBEG+3
GO TO 100
90 I1=IEND=3
I2=(EnD=2
I132TknD=y
I4=TEND
100 CUNTINUE
Xt1=XX(I1)
X2=xX(12)
X3=XX(I3)
X4=4X(14)
CF1=(XIwT=X2)*(XINT=X3I)®(XINT=X4)/((X1=X2)¥(X1=X3)%x(X1=X4))
CF23(XINTaX1)*(XINT=X3)¥(XINT=X4)/((X2=X1)*¥(X2=X3)%(X2=X4q))
CR3=(XAINT=X1)%(XINT=X2)*(XINT=X4)/((X3=X1)¥(K3=X2)%(X3=X4))
CFAS(XINT=X1)X(XINT=X2)*(XINT=X3)/((X4=X1)¥(X4=X2)%(X4="X3))
YINTSCHL2YY(L1)+CF2%2YY(I12)+CF3*YY(L3)+CF4*YY(I4)
RETUKN
END
SUBROUTINE SIRFY(XI,T,NPT,SY0,SY}1)
CHEFEEER XA ERAEEERREREERSX RN AR LSRR A RENER SR X AN EE LR LR R KSR E R KX KRR L
Cc THIS SUBROUTINE GENERATES A WONUNIFORM PUINT DISTRIBUTION
C USING VINOKURS TwWwO=SIDED STRETCHING FUNCTION, AS GIVEN IN
C NASA CHR=3133,
CERERRERNAEEE KRR EERRRRE LR ARNERRAREERRES SRR RS EEBEFSARSXERRER RN EKE
IMPLICIT REAL®8 (A=H,0=2)
C
DIMENSION XI(151),T(151)

COMPUTE XI,

anon

OXI=1,0D0/(NPT=1)
DO 40 J=1,NPT
40 XI(J)=(J=1)%DXI

COMPUTE DELTA Y,

ann

A=DSQRT(SYO0/SY1)
BaDSORT(SY0*SY1)
TEST=2,762968100
IF(B8.GT.TEST) GO TO 50
YBARSB=1,000




jonpatuad
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GHH:1lhm
4280 DELY=(((((=0,00107941230D0%YBAR+0,0077424461D0)*YBAR
4290 1=0,024907295D0)}*YBAR+0,057321429D0)*%YBAR=0,1500)*%YBAR
4300 2+41,0D0)*DSURT(6.0DUO*YBAKR)
; 4310 GO TO 6u

50 V=DLOG(n}
w=1,0D00/8=0,028527431D0
DELY=(((8,56795911D0%w=2,629454700)%*w+1,9496443D0) *w
140,24902722D0) *w=0,02041793D0+V+(1,000+1,0D0/V)*
2DLOG(2,0D0%V)

60 CONTINUE

COMPUTE T,

NOON

C1=A*DSINH(DELY)

C2=1,0D0=A*DCOSH(DELY)

DO 70 1=1,NPT

V=DTANH(DELY*XI(I))
T(I)SFN/(CL+C2%FN)
70 CONTINUE

RETURN

END

SUBROUTINE STRFX(XI,T,NSEG1,NSEG2,NMAX,SX0,SSR,XIBO,XBTE,XIBM)
CREREEE AR RN RN AR AR R SRR KRR NN KRR A NN KRR SR KRR E A AR KRR KRR RN R AN
C THIS SUBROUTINE GENERATES A NONUNIFOXKM POINT DISTRIBUTIOW
C SPLCIALIZED T0 THE CUURDINATE WRAPPED ARQUND THE AIRFOIL,
CRERREX KRR R RRRERRR RN AR R A KRR RN AR RS RX R RN AL AR RN R SRR NEAA NN KRKAER

IMPLICIT REAL*® (A=H,0=Z)
(o

DIMENSION XI(151),T(151)

SEGMENT NUMBER 1,

nna

TTE=XBTE/XIBO
TMAX=XIdM/XIBO
DXI=1,000/NSEGL
NP1=NSEGL1+1
S150,500%(SX0=1,0D0)
Do S50 I=1,nPY
XX=(1l=1)*DXI
XICI)=XX
50 T(I)=XX*¥(1,0D0+S51%(1,0D0=XX)*(2,0D0=%XX))

SEGMENT NUMBER 2,

0NN

AA=0,500%(3,0D0=SX0)
XWTESNSEG2%DAI
BRE2(TTE=1,0D0=AA¥XWTE)/ (XWTEXXWTE)
NPZ=NSEG2+1
DO 60 K=2,NP2
I=iSEGL1+K
Xd=(K=1)¥DX1
XI1C(I)=1,0D0+XW

60 TC(I)=1,0D0+XWRx(AA+XYWEHE)

SEGMENT NUMBER 3,

nonon

N3=NSEGI1+NSEG2

NP3=2N3+1 -
XITE=XI(NP3)

DT1=1T(HP3)=T(N3)

51=0T1/(58R~1,0D0)
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KMAX=151«NP3
DO 70 K=2,KMAX
I=N3+K
XICI)=XITE+(Kke=1)*DXI
TISTTE+S1¥(SSR**¥(K=1)=1,0N0)
TC(I)=TI
IF(TI.GE,THAX) GO 10 890
CONTINUE
NMAX=4

RESCALE VARIABLES,

SCALE=XBTE/XITE
DO 90 I=1,NMAX
XI(I)=SCALE*XI(I)
TCI)=XIB0%T(4)
RETURN

. END

SUBROUTINE STRFZ(XI,T,NPT,S50)

CREEBRREEERRERXRAERBRRRRERRREESRESRBEERRRENUREXAREER KA RABEXRRERE KRR XK

C
c

THIS SUBRQUTLLE GENERATES A NONUNIFORM POINT DISTRIBUTION USING
VINOKURS ONE=SIDED STRETCHING FUNCTIUN,

CERFXXAERXEREXLEREEFEXARBEESEXRRSELEE AR S SR AR EXR SR EEX XX XXX EEFEEL KN REFERENES

c

ann

[N e Xe!

noan

40

IMFLICIT REARL*8 (A=H,0=2)
DIMENSION XI(151),T(151)
COMPUTIE XI,

DXI=1.0D0/(NPT=1)
D0 40 K=1,NPT
XI(K)=S(K=1)*DXI]

COMPUTE DELTA Y,

TEST=2,782968100

IF(S0,GT,TEST) GU TO S0

YBAR=SO0=1,0D0
DELYSC((((=0,00107941230D0%YBAR+0,0077424461D0)YBAR
1=0.024907295D0) *YKAR+0,05732142900) *YBAR=0,15D0) *YBAR
2+41.0D0)*DSUST(6.,0DU*YBAR)

GO TO 60

50 V=DLOG(S0)

60

70

W=1,000/580-0,028527431D0

DELY=(((8,56795911D0%41=2,6294547D0)*%W+1,9496443D0)%w
140,2490272200)*%w=0,02041793D0+V+(1,0D0+1,0DC/V)*
2DL0G(2,0D0%V)

CONTINUE

COmPUTE T,

C1=0,5D0*DELY

C2=1,0D0/DTANH(CL)

DO 70 K=1,NPT
T(K)=1,0D0+C2%DTANH(CL1*(XI(K)=1,0D0))
CONTINUE

RETURN
END
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